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INTRODUCTION 

The very impetus for the formulation of  quantum mechanics in its 
modern (post-1926) form came from a reconsideration of the measuring 
process in the quantum context. 

If there is one feature which distinguishes quantum phenomena from 
classical ones (we shall define our terms later, in Part I) it is the 'reduction 
of the wave-packet' that occurs upon observation. Where, when and how 
(or indeed whether) this reduction occurs will form the subject of  our 
inquiry. 

Our programme will be as follows; Part I will be devoted to establishing 
the definitions we shall require, in particular of  what is meant by a measure- 
ment. We shall also examine the means whereby a measurement is effected, 
as such an examination is generally accepted to be inseparable from the 
definition of measurement. We shall then use these definitions to proceed to 
a more precise formulation of the 'measurement problem' than is normally 
given in treatises on quantum mechanics. 

In Part II we shall outline the various attempts made within the statistical 
framework to give a coherent solution to the problem. Here, as in Part III 
the solutions will be given in chronological order, so that the overall 
presentation will be an historical one. We shall naturally follow each solu- 
tion through to the present day, so that each Part will be, in this sense, 
complete in itself. 

Part III will describe those solutions which have looked beyond the 
statistical viewpoint. To what extent these are solutions, and to what extent 
we can expect a solution to emerge along such lines will form the main point 
of  our discussion. 

We have adopted the common terminology of classifying the solutions of 
Part II as the 'subjectivistic' approach, while granting the attempts described 
in Part III the title of 'objectivistic'. We do not like this categorisation and 
adopt it 'without prejudice'. 

Part IV is an annotated Bibliography. It includes, in addition to those 
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works explicitly referred to in the body of the text (Parts I, II, IIl), all the 
relevant literature on the subject. We have felt this to be a better way of 
presenting a broad picture of the work in our field without overloading the 
main part of the text. 

Though this was intended to be a mathematically-oriented treatment of 
the problem, it has been necessary for us to dwell from time to time on the 
purely epistemological aspects of the solutions that have been proposed. 
This may be unfortunate, but it is necessary as the only reason for rejecting 
most--or al l--of the solutions or for accepting any as more than purely 
semantic evasions of the problem rather than as solutions of it must be 
epistemological. 

PART I: THE PROBLEM 

Si parva licet componere magnis 
(If we may measure small things by great ones) 

Virgil, Georgics (IV) 

Definitions of Measurement 
1. The Classical Case 

It is commonly stated in the literature of quantum mechanics that the 
essential feature of classica ! physics is that measurements are in principle 
exact, and that the extent to which they are not exact represents a feature 
of the experiment under consideration that could be eliminated if we had 
the time or the patience. There is to our knowledge no authority for this 
statement that is based on the literature of classical mechanics itself. It is 
clear that the essentially 'classical' nature of classical physics emerged from 
the reconsideration of that discipline in the light of quantum experiments. 
There is a serious danger in defining classical physics in this way. There is 
for example nothing to prevent constant redefinition of what we mean by 
classical physics as new problems arise in quantum theory. Margenau (37, 
p. 40) has characterised this with a complaint that modern writers tend to 
equate 'classical' with 'bad'. 

There is also an unfortunate tendency to confuse the words 'classical' and 
'macroscopic'. This is particularly important in the present context, as we 
shall rely on an intuitive understanding of what is 'classical', whereas there 
is no theoretical reason why we should not treat all 'macroscopic' problems 
as quantum phenomena. It is for us to decide in each case whether it is of 
any importance that there is, for example, a non-zero but admittedly very 
small probability that we shall find ourselves in outer space tomorrow 
morning. It is difficult to see how anything but common-sense can save us 
from considerations of this kind. 

We shall rely on the following definition: Classical physics is a well-known 
set of rules for solving problems in physics; it gives its answers in the form of 
exact numbers. This leaves aside the question of what relation we consider 
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exists between the exact answers given by the rules of classical physics and 
the actual values (if any) of the quantities under consideration. 

2. The Quantum Case 

In the early literature there is very little attempt to define what is meant 
by the term 'measurement' in the quantum context. Heisenberg, Bohr (2, 4) 
and other early authors write of measurement as though there were no need 
to specify precisely the meaning of the term. It should be noted that they all 
describe particular examples of what they mean by a quantum measurement 
(Heisenberg's microscope in particular, which is referred to also by Bohr 
(4)). No writer before von Neumann was prepared to generalise. The 
impression one gains from reading the literature of the late '20s is that the 
full implications of the final departure from classical physics--which it 
should be emphasised took place in 1925, not in 1900--had not sunk in. 
Bohr and Heisenberg both appear to be relying on an intuitive under- 
standing of the term 'measurement'; that this understanding was not 
intuitive nor even present is indicated by the care with which later writers 
(see below) defined their terminology. 

Even von Neumann did not actually define what he meant by a measure- 
ment, though his treatment of the process was so detailed that it is unfair to 
demand what might have proved to be a facile definition. Instead of this 
we are given a breakdown of the nature of the process on the basis of the 
(unstated) assumption that it involves a macroscopic record of a microscopic 
event. This may be obvious but it should be recognised as essential to the 
process. 

Shimony, writing in 1963 (90) said: 

'The founders of quantum theory, particularly Heisenberg and Bohr, 
discussed with much subtlety the epistemological problem of relating 
atomic physics to human experience; but except for a few remarks, 
usually tentative and oblique, they do not consider the ontological 
problem of mind and reality.' 

We feel this criticism to be justified. Without an understanding of what is 
meant by measurement and where it occurs (does the measurement consist 
of taking a reading or of registering it in the consciousness of the observer ? 
--we ask the question in the confidence that we shall be able to provide the 
answer by drawing on later literature) we cannot expect to gain any meaning- 
ful insight into the process itself. Von Neumann may not have defined his 
terms directly but he examined the implications of his stated and unstated 
assumptions so carefully that we should be reluctant to criticise his approach 
on these grounds alone. 

Writing in 1935, Schroedinger gave the first definition of what was meant 
by a 'measurement': 

'The systematically induced interaction between two systems (object and 
measuring instrument) is called a measurement of the first system if a 
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directly observable variable of the second (position of a pointer) is always 
reproduced within certain limits of accuracy on immediate repetition of 
the process (on the same object, which may be presumed to have been 
subjected to no other influence in the meantime).' 

(Translated from p. 824 of (16).) 
This insistence on immediate repeatability is crucial, Though Schroe- 

dinger admits in the next line that this is 'not a perfect definition' it is 
perhaps relevant to observe that if it is enforced it precludes any measure- 
ment-- if  we are allowed to call it such--that destroys the property in 
question. There is no suggestion of a qualification such as 'in principle': 
Schroedinger is too honest for that. By 1935 it had been recognised that 
things that were possible only 'in principle' were potential sources of serious 
conflict between theory and practice. To put the restriction into practical 
terms: it is extremely difficult to see how a Stern-Gerlach experiment could 
ever be repeated. The errors involved in an approximate repetition are not 
errors of observation but may well be intrinsic 'unpredictables' governed 
by the theory itself. 

Schroedinger's path can lead either of two ways. If unrepeatable experi- 
ments are to be excluded, then we must turn either to a reformulation of the 
probabilistic viewpoint, such as (see (41)) Schroedinger himself has since 
appeared to favour or to a theory which reduces all experiments (and hence 
all mechanics) to a structure based on such experiments. This latter course 
was indeed taken by Birkhoff and von Neumann, without explicit details of 
the reduction (18). The details are given by Jauch, writing much later (1968) 
(121), and thus drawing on the work done since 1936. 

Jauch distinguishes (121) between two kinds of measurement. A measure- 
ment 'of  the first kind' is one that can be repeated without the risk of obtaining 
no answer or of obtaining a different one. This is the logical corollary of 
Schroedinger's (16) definition. Jauch puts it thus: 'Suppose we repeated the 
measurement immediately after it has o c c u r r e d . . ,  then we would with 
certainty observe the particle inside the volume of the counter.' 

A measurement 'of  the second kind' is one that changes the property 
measured so that repetition would necessarily give a (statistically) different 
answer. It is &course possible that by sheer chance the particle happens to 
have the same momentum again at the instant of the second measure- 
ment. That is why we have insisted on the 'statistical' nature of the 
difference. 

Schroedinger did not accept the need for the second kind of measurement. 
Jauch asserts that the first kind is typical and restricts his discussion to this 
type. We are inclined to doubt whether this reduction is either generally 
possible or even theoretically permissible in the way stated. I f  there is any 
meaning in the distinction it must be that the first type of experiment is, on 
repetition, dispersion-free, and the second is not. Jauch (121) tells us (p. 114) 
that there are in fact no dispersion-free states in quantum mechanics. All 
quantum measurements are 'disturbing' and it is thus, of course, a classical 
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feature of the classical measuring apparatus that Jauch is describing, not a 
property of the observed system itself. 

The first explicit description of measurement and measuring apparatus, 
which drew its inspiration from the critique implied by Einstein et aL (15), 
was made by Elsasser (23): 

'A measurement constitutes the limiting case in which inductive inference 
concerning the microscopic features tends towards certainty.' 

'Certainty' here means, as is clear from the context, what we have defined 
above as 'classical' certainty. Elsasser pointedly contrasts the quantum 
situation with the 'classical' one where the 'microscopic features of a system 
are determined in function of its microscopic ones'. 

But it was left to Margenau, in 1937, in the course of a beautiful paper 
(25) to make the criticism that we have suggested and to put the matter 
right. We quote: 

'The usual way to theorize about measurements is to select, for no 
obvious reason at all, a specific type of experiment, analyze it very fully, 
and then generalize the results without inquiring very much whether these 
results fit the multitude of other measurements that might be considered. 
The experiments chosen are mostly imaginary ones, a feature which of 
course detracts in no way from the value of the example as long as the 
imaginary procedures are permitted by known physical laws. Heisenberg's 
experiment for determining the position or the momentum of a particle 
by means of a y-ray microscope, and Bohr's slit experiment have perhaps 
borne the brunt of this procedure. Not as common but yet quite popular, 
particularly among mathematicians, is a mode of inquiry which starts 
with quantum mechanical theory, considers what ideally a measurement 
ought to be, and then manages to find one which fits the prescription. 
In studying (10) J, yon Neumann's excellent book on the foundations of 
quantum mechanics we have had the impression that this method was 
being employed. What makes the method seemingly successful is the 
wealth of existing types of measurement; it insures that any prescription 
can be filled.' 

And later, Margenau answers his implied question: 

'A measurement is any physical operation by means of which the 
numerical value of a physical quantity can be determined? 

And: 

'A measurement usually consists of an operation plus an observation, 
but this need not be the case.' 

We disagree with this last statement, which seems to conflict with 
Margenau's own careful distinction later in the same paper between 
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measurements and the preparation o f  states. His example of these is as 
follows: 

'When electrons are made to pass into a magnetic field, a new state with 
respect to electron spin has been produced, but the spin has not been 
measured.' 

We feel the contradiction to be obvious. 
Kemble (24) in 1937 insisted, rather oddly, that the criterion for a saris- 

factory quantum method of measurement should be, for example, that 'it 
shall be in principle capable of yielding results of arbitrary precision inde- 
pendent of the limitations due to the Heisenberg uncertainty principle'. 
Though the key words are, of course, 'in principle' we take exception to the 
misuse of the word 'arbitrary' even if we accept what is implied in the 
statement, which we do not. This is, in any case, a very roundabout way of 
requiring that the measuring apparatus be essentially 'classical'. 

The first attempt to lay down a clear definition of where and when a 
measurement took place (as opposed to defining its nature, dealt with by 
Margenau) was made by London & Bauer (26) in 1939: 

'Mais un couplage, m~me avec un appareil de mesure, n'est pas encore 
une mesure. Celle-ci est achiev6e seulement lorsqu'on a observd la 
position de l'aiguille. C'est pr6cis6ment cet enrichissement de connais- 
sance, acquis en vertu de l'observafion, qui donne ~ robservateur de 
droit de choisir entre les diff6rentes composantes du m61ange pr6vues 
par la th6orie ... '  

Thus we see that it was only in response to the questions raised by 
Einstein et aL (15) that a really searching enquiry was made into the meaning 
of terms that had consciously or unconsciously been carried over from 
classical physics into quantum mechanics, and which had not in fact 
preserved their classical meaning. 

The Measurement Problem 

There is no equivalent in classical physics to the 'measurement problem' 
in quantum mechanics. The problem arises in the following way. A system 
S is in a state if, happily evolving according to the time-dependent Schroe- 
dinger equation. We decide (leaving at least one major question--that of 
free will--aside for the moment) to measure an attribute (say position) of 
the system. Once we measure the attribute we can say that we have measured 
it and obtained the result x. We may not say that the system was in the state 
x before the measurement, merely that we have found it to be so. Thus, on 
the one hand, we can merely predict that at time t the system will have some 
non-zero probability of being in the state x, but on the other hand after the 
measurement has been made we have, within the limitations of experimental 
error, found it actually to be in the state x. 

How, then, does this situation differ in principle from the following 
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(classical) problem ?- - I f  I throw a die in the air I know that there is a 
probability of 1/6 that I shall obtain a six. The difference lies in the fact that 
i f I  were so minded I could fig up elaborate apparatus to calculate according 
to the laws of classical mechanics precisely how the die would land once I 
knew the orientation, velocity, spin and other relevant 'classical' variables. 
So, subject to the proviso that errors of experiment are (equally) allowable 
in classical (and quantal) calculations, I must admit that I was deluding 
myself in saying that all I knew was that the probability of throwing a six 
was 1]6. In this case, we say that we are not in possession of maximum 
information. 

The essential difference between this situation and its quantum counter- 
part is that a knowledge of the probability of finding the system in state x 
constitutes according to the Copenhagen interpretation of quantum 
mechanics precisely the maximal information that we seek. Whether or not 
this is an acceptable situation, it is the view of the currently favoured inter- 
pretation of quantum mechanics. We shall deal with the objections to it, 
the alternatives, and what we consider to be the reasons for being satisfied 
with this essentially probabilistic view in Part III. 

So, on the one hand there is always in classical statistical theory the 
implied possibility of improving our knowledge and going from the dis- 
continuous probabilistic view (in our example 1/6 becomes instantaneously 
either 0 or 1 depending on whether we get a six or not) merely by working 
harder at the problem and as we gathered more and more information 
showing that the probability would converge either to 0 oi, to 1, while on 
the other hand we are faced with the (quantum) situation that we cannot in 
principle know more than the probability, which will rarely be either 0 or 1, 
before the state assumes instantaneously one or other of (say) two alterna- 
tives with certainty. 

To anticipate some of the points that we shall raise in connection with the 
attempts to replace the probabilistic theory with a deterministic one, we 
must add that we consider that there are no truly classical situations of the 
kind described above. That is to say, there are no immediately obvious 
cases of maximal information in the classical case and therefore there is no 
reason to suppose that any could be realised in practice. To deal with a 
commonly quoted example, Schroedinger gives the case ('ein budesker 
Fall') ((16), p. 812) of a cat in a torture chamber. The whole paradox hinges 
on the statement, made in apparent innocence, that it must needs be 
entirely obvious that the cat is either dead or alive, on examination, at any 
given time, and not, say 80 ~o dead and 20 70 alive. 'Dead' and 'alive' are, of 
course, the two eigenstates of what we may call the cat's existence-function. 
The paradox occurs as a result of the ingenious transfer of the superposition 
principle from the quantum level of the murderous machine to the classical 
level of the cat's existence function. While we realise that we are running 
the danger of confusing errors of observation with errors inherent in the 
situation and dictated by the laws governing it, (they look the same, of 
course) we are prepared to maintain that it is far from obvious how to 
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determine, for example, whether a cat is dead or alive. We do not even have 
a generally accepted medical definition of death. The proponent of the 
paradox may reply that he can construct another, more obvious, example. 
Let him, and we shall try to dispose of his assumptions in the same way. 

It is our view that the paradox may well crumble once we accept that there 
are virtually no experiments the outcome of which can be predicted with 
absolute certainty, even in principle. We can get very close to certainty, 
perhaps, but that is not the same thing at all. In the circumstances, we feel 
that it is hardly surprising that when the conditions of a classical observation 
are subjected to the rigorous scrutiny of quantum analysis it transpires that 
certainty is unattainable except as a special case of probability. 

The proof that quantu~ mechanics could not be reduced to a classical 
stochastic theory 'involvin-g a probability distribution function of position 
and momentum' was given by Cohen (107). 

If we are to be consistent, we must return to our example of the die. If 
the 'quantum situation' obtains here too, we must allow of the possibility 
that the odds would converge to a value other than 0 or 1. We should 
ourselves rate this much higher than a possibility. 

Summary 

As is clear from the foregoing consideration, the problem of measure- 
ment does not arise solely in connection with the simultaneous determina- 
tion of incompatible variables, but arises with the careful examination of 
any single quantum measurement. 

The problem is a serious one: so serious that extraordinary solutions may 
have to be considered, all the obvious ones having been tried and found 
wanting. No-one should be surprised if quantum physics has to follow the 
Hippocratic dictum: 

'Extreme remedies are the most appropriate for extreme diseases. 
(Aphorisms, I. vi.) 

PART II: THE SUBJECTIVISTS 

'But to us, probability is the very guide of life.' 

Bishop Joseph Butler (1692-1752) 

Chapter 1 

We shall now embark on a description of the 'orthodox' approach to 
quantum mechanical measurement. By this we mean any approach to the 
theory of measurement that is based on an acceptance of the probabilistic 
nature of quantum phenomena. We shall leave the description of any 
criticism of these approaches that disputes the essentially statistical character 
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of the theory until Part III, where these alternative formulations will be 
considered. 

Von Neurnann 
The first coherent attempt to interpret what happened when measure- 

ments were made on quantum systems was that of  yon Neumann (10). 
Whatever may be said about yon Neumann's work with the benefit of thirty- 
seven years' hindsight, his work is still unrivalled for its thoroughness and 
the perceptiveness of its approach. Gaps there may be, looseness of logical 
argumentation there is, but the fact remains that yon Neumann's work is 
the fountainhead of all subsequent writing on the subject. Not a paper has 
been published on measurement that fails to give due acknowledgement to 
von Neurnann's work, whether it is used as a supporting reference or as the 
butt of the writer's criticism. It is one of the true masterpieces of our time. 
The fact that it was written only six years after the Heisenberg-Schroedinger 
reformulation of quantum mechanics must rank as one of the miracles of 
modern mathematical physicsi 

That minor modifications have been made since 1932 to yon Neumann's 
approach does not detract from its fundamental validity: assuming only 
that one accepts the 'probabilistic premiss' as either true or at least self- 
consistent. We should go so far as to say that von Neumann proved the 
only two results of unquestionable relevance to our problem: the impossi- 
bility of hidden variables within the system given certain assumptions and 
the irrelevance of the point at which the 'cut' is made between observer and 
observed. This latter has been picturesquely compared to the problem of 
whether one's spectacles are part of what one is looking with (one's eyes) 
or what one is looking at. t  Von Neumann showed that it did not matter. 

Von Neumann's Theory of Measurement 

It would be impossible to describe in these pages the whole of von 
Neumann's theory: what we shall give must needs be a crude caricature 
of it. 

To measure the quantity A in the system a, we represent the quantity A 
by an Hermitian operator A in the Hilbert space associated with the 
system o'. The axioms of Hilbert space are well known and are given by 
yon Neumann in Chapter II. The operator A will have (and here we must 
qualify our acceptance of von Neumann's analysis) a pure discrete spectrum 
of eigenvalues. Von Neumann asserts that these eigenvalues represent the 
values that the quantity A can take upon a measurement: he writes 'a 
measurement of A then has the consequence of changing each state I~> 
into one of the states [~kl>, [~k2) . . . .  * which are connected, with the respective 
results of measurement 2j, 22, 23 . . . .  (the eigenvalues). The 'kets'* are 
orthonormal. 

The assertion quoted is the 'projection postulate'. Its necessity has been 

t Due to Dr. G. Fay. 
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queried, as has its physical plausibility. These doubts are dealt with on 
(pp. 92-96). 

The process of measurement is characterised as follows. If  we have a 
measuring apparatus m (a system), the system to be measured and the 
measuring system interact. Let the state of m be given by the ket l~k,)) in 
the Hilbert space ~ m  associated with m. The state of the combined system 
a + m is given by 

E c.l n) | 
t l  

which is a vector in the product-space ~ ' "  | ~ " .  It has been discussed (55) 
whether either or both of the states may be mixtures, rather than pure. 

Von Neumann defines two types of process by which a system evolves: 

(1) U -+ U' = ~ (U~b,, q~,)Pi,,j 
n=l 

(2) U --* Ut = e -(2~l/h)m Ue (2'~/h)m (p. 351) 

H is here the energy operator (Hamiltonian), t the time~ H is independent 
of t. (1) and (2) are the two essential processes for the time-evolution of a 
system: (2) is continuous, while (1) is essentially discontinuous. P is a 
'projection operator'. 

(1) is statistical, while (2) is 'causal'. The transformation (2) is clearly 
unitary, since 

U t =  B o B -1 

where B is a unitary operator as the energy operator is a real one (this point 
should, we feel, be made in the context of a free-ranging discussion that 
will take in for example probabilities p such that 0 < p .<. 1 is not necessarily 
satisfied--see references (29) and (117)). 

As Krips (123) has put it: 

'At this point yon Neumann digresses into philosophicaI considerations, 
with a consequent increase in the controversial content of his theory. He 
claims that the measurement process can only (sic) be considered com- 
plete at a time t ~ when the state of a + m is represented by a density 
operator 

~v~+m = X Ic 121@o>( ol | 
n 

Here, Krips complains, von Neumann introduces a number of ad hoc 
postulates in order to ensure that he 'manages to satisfy the requirement of 
objectivity by including in the measurement process a reduction of the 
wave-packet performed by the observer'. 

We have indicated that there is another, purely mathematical, objection 
to yon Neumann's theory. There is an element of question-begging at the 
point where he dismisses the problem of the continuous spectrum (p. 220, 
English edition) by specifying in advance the 'measurement accuracy'. 
This gap has not been filled to our knowledge. 
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Von Neumann" s Results 

On the strength of the above assumptions, and of others stated and 
unstated, yon Neumann derives a number of results. One of the most 
significant of these is that the introduction of hidden variables (see Part III) 
cannot add to our ability to understand quantum systems. 

Von Neumann puts it thus (ppo 304-5) 

'no further repetition of successive measurements can bring order into 
this confusion. In the atom we are at the boundary of the physical world, 
where each measurement is an interference of the same order of magnitude 
as the object measured, and therefore affects it basically.' 

In other words, without directly assuming the absence of hidden variables, 
one can demonstrate that they have no role to play in the system (quantum 
mechanics) which is therefore an essentially statistical one. Von Neumann's 
argument for this has been criticised, perhaps most recently by Rosenfeld 
(103), on the grounds that it is a circular one. In some way, his critics 
maintain, the absence of hidden variables is implicit in the structure of the 
theory as given by yon Neumann. The logical basis for a general proof of 
the impossibility of hidden variables is thus absent. All that yon Neumann 
showed, and this much is generally accepted, was that within the system 
nothing could be gained by searching for hidden variables. Even if one 
accepts this point of view, it means that before quantum mechanics could 
be placed on the same footing as classical mechanics we should have to 
modify the system itself. Attempts to do so are described in Part III. 

Von Neumann's greatest single contribution to the theory was his theory 
of the 'psycho-physical parallelism'. We have already alluded to this 
(p. 89). On this point there is no dispute as to the accuracy or relevance of 
his work. The result states that it is immaterial where we place the 'cut' in a 
measuring system. 

Let I be the system observed, II the measuring apparatus and III the 
observer. Von Neumann shows that the same final result is obtained whether 
the measurement be taken to occur between I and II or between II and III. 
In the one case, rule (2) (p. 90) must be applied to I, while rule (I) is 
used on the interaction between I and (II and III). In the second case, (2) is 
applied to I and II, and (1) is used on the interaction between I and III. 

When we recall how striking is the role of the measuring operation, it is 
remarkable that there is such arbitrariness in our assignment of the point 
at which it occurs. It should not surprise us that this is true in the classical 
analogy we gave. There are here not two different processes of the types (l) 
and (2), merely one set of laws for all measurements. 

If we write the result in yon Neumann's own notation: 

I [ II + III 
! + II [ I I I  

we can see precisely what is meant by the 'shifting of the cut'. That there is 
something really extraordinary afoot is clear from the fact that lI  is 
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(according to most authorities, especially Bohr) a macroscopic device. 
Indeed Bohr maintained that measurement presupposed the existence of 
classical systems. Now let us imagine a Heisenberg microscope (II), with a 
system (I) under it and our eyes (Ili) glued to the output. If the projection 
postulate is to be valid in the ordinary sense, the system is thrown into an 
eigenstate when it is observed: i.e. either at the input to II or at the output 
from it. But not both--surely not ? 

This apparent contradiction lends weight to the criticisms (given below) 
of the projection postulate. If the psycho-physical parallelism proof is, as 
we believe, valid, and the projection postulate is also true, then what is the 
state of the system (light rays) that is travelling through II ? The fact that we 
can apparently nominate arbitrarily the state in question seems to us to be 
a striking example of free will--to say the least. 

As the light inside the telescope does not have any observable properties 
until it has emerged, it seems far more likely that we have asked a seemingly 
well-formed question which, like any question concerning the simultaneous 
measurement of two incompatible variables, is in fact excluded by the 
restricted structure of quantum mechanics. It is of course very easy to 
formulate such questions--there is a non-denumerable infinity of them. 

Thus we see that yon Neumann provided mathematical solutions to 
problems that had puzzled physicists. In solving these problems, he raised 
even more fundamental questions about the nature of reality (see (15)) and 
the validity of quantum mechanics itself. The effect of his work cannot 
easily be overestimated. 

Margenau' s Critique (1935/6) 

As a direct result of the paper by Einstein et aL, and in an attempt to answer 
it, Margenau proposed (21) to drop the 'projection postulate' of yon 
Neumann (that a measurement necessarily produces an eigenstate of the 
observed system). His assertion is that the EPR paradox relies on the 
implicit assumption that this postulate is true. He asserts that the paradox 
disappears when the postulate is removed, and--most important--that 
the postulate has no real justification. This last criticism is expressed as 
follows: 

'There is hardly more justification for supposing that a single measure- 
ment determines completely the state after, than to suppose it to determine 
completely the state of the system before the act of measurement' (p. 240). 

An equally serious criticism is that the projection postulate is contra- 
dictory to the 'more fundamental' postulate of the Schroedinger equation, 
in the way we have described in Part I. 

Elsasser' s Comments (1937) 

By the time Elsasser wrote, it was possible for him (23) to make the 
statement that 'in quantum mechanics each measurement produces some 
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perturbation' without attribution: the Copenhagen interpretation had 
really captured the thinking of physicists. Elsasser also wrote that: 

'It might appear, especially from yon Neumann's theory, that a quantum 
statistical mechanics can be built up that maintains in each step a strict 
analogy to the corresponding classical concepts.' 

We do not feel this criticism to be justified except in the very literal sense. 
It conjures up the image of a reader of von Neumann turning the pages 
eagerly in search of an explanation of what ~ was, in classical terms. One 
would have to be very naive to do so today, but maybe Elsasser's warning 
was more appropriate in 1937. 

Reichenbach (1944) 

In common with others (below), whose theories we shall examine in more 
detail, Reichenbach (27) accepts the basis of von Neumann's argument. 
He gives, for example, the following definition of a quantum-mechanical 
measurement: 

'A measurement of an entity u is a physical operation relative to which 
the 0-function of the physical system is represented by one of the eigen- 
functions of u . . . . .  ' 

We could not ask for a clearer statement of acceptance of the projection 
postulate. 

However in a footnote on p. 14, Reichenbach writes: 

'J. yon Neumann's proof (that no "hidden parameters" can exist) ... 
shows only that the assumption of hidden parameters is not compatible 
with a universal validity of quantum mechanics.' 

Margenau ' s Renewed Onslaught (1958) 

Clearly feeling that the points he had made in 1937 had not been taken, 
Margenau wrote (62) more than twenty years later that 

'the trouble with the idea of measurement is its seeming clarity, its 
obviousness, its implicit claim to finality in any inquisitory discourse'. 

Measurement 'stands at the critical junction between theory and experience'. 
'Uncertainty implies no ban on measurements: it prescribes the structure of 
theories.' He repeats his insistence (p. 85) that measurement should 
do nothing but ascribe a number to a physical quantity. The uncertainty 
would thus come from 'state-preparation' (p. 86) not measurement. 

Suessmann (1958) 

Suessmann wrote (63) that the von Neumann proof for the non-existence 
of hidden variables was subject to the criticism that it assumed that the 
hidden variables were not disturbed by measurement. This is only one &the  
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criticisms that can be made, and in our view not the most serious one. We 
shall deal with the problem of  hidden variables in detail in Part III from the 
point of  view of  those writers who seek an acceptable alternative to the 
statistical formulation. 

Suessmann pointed out that it did not fundamentally change the validity 
or otherwise ofvon Neumann's theory if we did not assume that the observed 
state was not pure but one of an ensemble described by a mixture, before 
observation. 

Durand (1960) and Fine (1969) 

A much more radical criticism of von Neumann was made by Durand 
(70): he castigates von Neumann's theory as 'in some respects in conflict 
with the actual procedures of measurement'. He offers a theory in which 
'even if the value b(a) of B corresponding to the eigenvalue a of  A is found in 
the observation ~(t) is not in general the associated eigenstate ~a(t). Fine 
(125) gives a critique of  Durand's analysis as follows: 

'Durand's scheme is to correlate distinguishable pure states of the 
object with distinct expected values of the apparatus observable.' 

Fine proceeds to demonstrate--to our satisfaction--that this account is 
invalid. 

Albertson (1963) 

The first really constructive criticism of von Neumann's theory came 
from Albertson (85). However, this writer redefines the concept of  measure- 
ment in a dubious way--which happens to coincide with the results he 
obtains. He derives an operator from which it is possible to determine (R),v 
and the dispersion of R before the measurement interaction on the basis of  
the measurement. He then asserts: 

' If  one accepts the proposition that the function of measurement in 
quantum mechanics is to determine the average value and the dispersion 
of  some physical quality . . . .  ' 

Quite simply, we do not. However, Albertson has provided us with more 
information than we had before. We prefer to follow Margenau's definition 
of  measurement given on page 85. However, this paper does follow 
Margenau's prescription in that it explicitly rejects yon Neumann's pro- 
jection postulate. It may well be that it is necessary to modify our definition 
of  'measurement' in the light of this paper, but we are not convinced. The 
fact that Albertson rejects the projection postulate on the one hand and 
finishes up with an even more statistical type of result than we were led to 
expect by Margenau when he proposed the rejection may mean that this is 
the best we can get. That in itself would be an interesting result but it is 
implicitly asserted rather than proved by Albertson. 
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Margenau Again (1963) 
In 1963 Margenau gave (89) a review of the state of the theory of measure- 

ment at that time, together with further pertinent comments of his own. He 
once again asserts (cf. p. 24) that the projection postulate is not necessary for 
the consistent formulation of quantum mechanical measurement theory. 
An interesting feature is the occurrence of negative joint probabilities for 
the measurement of non-commuting operators. We remark that these 
negative probabilities, for which Margenau offers no explanation, could be 
explained along the following lines. 

If  we know that the probability of a die landing with the six upwards is, 
on a frequency basis, 1/6, we may add a small lump of plasticine in an 
appropriate place, and then recalculate the odds, again by taking a large 
number of throws. The odds may well be, say, 1/12. There has then been a 
decrease in the probability of throwing a six. 

Consider now the equation 

Pl +P2 = P  (1) 

This is merely a probability equation illustrating the addition property in 
the case where the events referred to inpl  andp2 are disjoint. It can however 
equally well be regarded as an arbitrary partition ofp. Ifp = 1/6 and p~ = 1/2, 
P2 will be positive, as normally required. If  however p = 1/12 and Pl = 1/6 
then P2, which may be regarded as a correcting term, will be negative. But 
this does not alter the validity of the equation (1) as a probability equation. 

This argument can be found in a similar form in M. S. Bartlett's paper: 
'Negative Probability', Proceedings of the Cambridge Philosophical Society 
(1945), pp. 71-3. 

The question remains: what is Pz the probability of? Bartlett does not 
answer this question, and we cannot provide an answer either. 

Shimony (1963) 

In the course of a review of the 'R61e of the observer in quantum theory', 
Shimony describes (90) von Neumann's as 'the most systematic theory of 
observation' and accepts the projection postulate without question. We 
point this out not so much to criticise Shimony's point of view as to emphasise 
the unquestioning thoroughness with which physicists had absorbed the 
postulate and the unawareness that they displayed of Margenau's perennial 
criticism. 

Jauch (1964) (96) 

Jauch concentrated his efforts on re-interpreting the measuring process 
in such a way as to eliminate yon Neumann's 'ultimate observer' as he 
points out that the shifting of the cut in the observed/observing/observer 
system does not for all its elegance remove the problem of the essential 
difference between the two forms of transition. His theory is dealt with in 
detail (see pages 101-104). 
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Rosenfeld (1965) (103) 

Rosenfeld, in common with Daneri et al. (80, 108) attacked von 
Neumann's approach to the disproof of the hidden variable hypothesis as 
'circular'. He asserts that it is impossible to include the observer and retain 
objectivity. 

Sneed (1966) 

In a paper which deals exhaustively with the empirical basis for the 
projection postulate, Sneed (112) comes to the following conclusions: 

As it is stated, yon Neumann's argument for the projection postulate is 
not sufficient to warrant its conclusion. Additional premises are needed. 

In the course of examining a suggested plausible way of filling out the 
argument by adding premises, he is led to scrutinise the notion of state of 
a physical system which is employed in yon Neumann's argument, and the 
way of' constructing the state of a physical system which allows the premise 
in question to be most readily justified is rejected as being at variance with 
the usual way of speaking of the state of physical systems, (Note that this 
approach was taken up by Jauch with more success (see p. 91 and 
pp. 101-104).) 

Sneed attempts to 'give a precise formulation of a commonly suggested 
way of relating the state of a physical system to statistical statements which 
are given an objectivistic interpretation in terms of relative frequencies of 
results of measurements'. 

The final conclusion is that 'if some more favorable way of construing 
von Neumann has not been overlooked, we might conclude either: (1) 
von Neumann's argument happens to be invalid although other empirical 
arguments for the projection postulate (e.g. from the Stern-Gerlach effect) 
might be valid; (2) the projection postulate is not to be taken as an empirical 
claim and yon Neumann is at best confused in thinking he is offering an 
empirical argument for it; or (3) the projection postulate is false.' That much 
is unexceptionable. No one to our knowledge has--in spite of the repeated 
challenges thrown down--jumped in with a plausible justification of the 
projection postulate. Writers either attack it or assume it without question. 

Summary 

We have given a resume of what we consider to be the most significant 
comments on von Neumann's formulation of the problem: we have so far 
restricted ourselves to those writers who accept the probabilistic basis of 
quantum mechanics. We have also not yet commented in full on the work 
of those writers whose criticism purports to provide a viable alternative to 
von Neumann's work in those respects in which the writers consider it 
deficient. It is therefore not surprising that our judgement of the comments 
that are summarised above is generally harsh: thirty-seven years would be 
a long time to have to wait for a consistent alternative to a very plausible 
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original. If  it were not for the work of the writers summarised below, we 
should be able to say that yon Neumann had had the last word. He himself 
never went into print after 1932--not even to the extent of revising the 
1932 text--on the subject of measurement. 

Chapter 2 

The Theory of London and Bauer 

The first major attempt at a reformulation of the problem of measurement 
in quantum mechanics after the publication of von Neumann's book was 
made by London & Bauer in a slender volume (26) (Paris, 1939). It is perhaps 
unfortunate that this book was published where it was, when it was, as it has 
been out of print ever since. This has resulted in an unwarranted neglect, 
and it is only really since 1963 that writers have felt constrained to take into 
account London & Bauer's point of view. 

We have already pointed out (p. 86) that London & Bauer were the first 
to establish a satisfactory--or at least consistent--definition of where a 
measurement took place. Taken together with Margenau's points (pp. 
85-86) this meant that there was a complete theory of what constituted a 
measurement. We shall try to point out those respects in which their 
approach differs from that of von Neumann (above). 

Firstly, we must say that their presentation is by any standards much more 
systematic and elegant than the labyrinthine account of yon Neumann. 
Their proof of the non-existence of hidden variables (but see below, Bub, 
1968) is very much shorter and to the point. They give a lovely demonstra- 
tion of the impossibility of the presentation of a pure case by a mixture 
((26), p. 31). Their presentation is not overladen with references to statistical 
thermodynamics, and there is no danger of a misunderstanding of the kind 
Elsasser mentioned (above, p. 24). 

Secondly, they write in a spirit of confidence--exemplified by the following 
extract: 

'Ce n'est donc pas une interaction myst6rieuse entre l'appareil et l'objet 
qui produit pendant la mesure un nouveau ~k du syst6me. C'est seulement 
la conscience d'un 'Moi' qui peut se s6parer de la fonction 7/(x,y,z) 
ancienne et constituer en vertu de son observation une nouvelle objectivitd 
en attribuant dor6navant a l'objet une nouvelle fonction ~,(x) --- ~k(x).' 

It is this point which constitutes London & Bauer's most controversial-- 
and of course entirely arbitrary and unprovable--contribution to the theory 
of measure. We feel that it simply states a fact, and are not in any way 
tempted towards the conclusions that Shimony (90) draws, He writes: 

'In this passage London and Bauer seem to be stating some important . . .  
proposition regarding the place of mind in nature.' 

7 
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We should go so far as to claim that the word 'mind ~ has no place in a 
scientific discussion. London & Bauer do not use it, and we do not think 
that  it was their intention to do so. It  might be relevant to quote the follow- 
ing comment  f rom the psycho-analyst Ernest Jones's autobiography (Free 
Associations, The Hogarth Press, London 1959, p. 155, footnote): 

' I  would here disclaim belief in any metaphysical entity named the 
"mind" . '  

London & Bauer are referring not to some mystical entity but to the 
observer's brain as a classical or quantum-mechanical entity for producing 
an interpretation of the numbers that Margenau insists on. 

They give a neat analysis of  the Stern-Gerlach apparatus, but only after 
having established general principles and as an illustration of them. 

As an example of  the elegance of London & Bauer's arguments we give 
their p roof  of  the irreducibility of  a pure case (translated from pp. 31-2). 

' In  order to do this we shall establish that a statistical matrix P obtained 
by mixing two statistical matrices Q and R 

(1) P = a Q + b R  with a + b = l  and a>~O,b>~O 

cannot be an elementary statistical matrix (such that P = p 2 )  unless 
Q = R = P. Let us form 

p2 = a 2 Q2 q_ b 2 R z + ab(QR + RQ)  

= a z Q2 + b2 R 2 + a b ( Q 2  + R 2 _ ( Q  _ R)2) 

= aQ z + bR 2 - ab(Q - R) z 

where we make use of  the condition a + b = 1. Thus: 

p _ p z  = a ( a  - Q2) + b(R - R e) + ab(a  - R) 2 

Let us now recall that the matrices Q - Q2 and R - R 2 as also (Q - R) 2 are 
always [positive] semi-definite.t It follows therefore that these vanish if P 
is to be an elementary matrix (P = pz). In particular we get (Q - R ) z =  0 
whence follows: 

Q=R 

for the square of an hermitian matrix is zero if and only if it is zero .... 
F rom Q = R and from (1) we get Q = R = P ' .  The semi:definiteness of  
(Q _ Qz) and (R - R z) is a simple corollary of the. fact that the weights of  
the component  pure states lie between 0 and 1. Lest there be any doubt, 
they have of course not assumed that Q and R are elementary. 

The missing step 'where we make use of  the condition a + b = 1' is as 
follows: 

aZ + a b = a ( a  + b ) = a . l  = a  

b 2 + a b  =b(b  + a ) = b . 1  = b  

so that a z Q2 + abQZ = (a 2 + ab) Q2 = aQ" etc. 

t i.e. (4, (Q - Qz)O >~ 0 for all 4. 
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It should be clear from the beautiful simplicity of their argument why we 
are drawn to London & Bauer's approach. London & Bauer are to von 
Neumann as Mozart is to Wagner: delicacy against splendour. 

Bub (119) on London and Bauer (1968) 
Bub writes of London & Bauer's proof of the impossibility of hidden 

variables that: 
'This whole analysis is beautifully simple, perfectly correct, but quite 
irrelevant to the hidden variable approach. Given the initial values of the 
Hilbert space vector and the hidden variables, then within the framework 
of a hidden variable theory it is possible to predict whether the final 
value of the Hilbert space vector will be IS+) or IS_) if the reflexive 
structural process from which the system is abstracted is such as to 
represent a measurement of the observable S . . . . .  The hidden variables 
do not decompose the quantum ensemble into sub-ensembles which 
consist of systems with deOnite spins in the classical sense, i.e. in which 
each system is associated with a unique spin vector defined simply as a 
function of the hidden variables. 

'The aim of a hidden variable theory is rather to reinterpret the notion 
"measurement of an observable" in a non-classicM, non-Copenhagen 
sense. '  

On London & Bauer's behalf, we reply to Bub that his 'analysis is 
perfectly correct, but quite irrelevant to the' quantum-mechanical approach 
of London & Bauer. For a more detailed defence, see Jauch & Piron's 
summary of their revision of yon Neumann's (and hence also of London & 
Bauer's) theory, in (87). 

The Interim: 1939-1964 
We have read and digested a great deal of literature stemming from the 

period between 1939 and 1964. We do not wish to waste our time or that of 
the reader on the many unsuccessful attempts made during that time to 
resolve the measurement problem within the probabilistic framework. 
Details of the literature are given in our Bibliography. 

Chapter 3 
Gleason' s Theorem 

In 1957 Gleason published (54) the proof of the following fundamental 
theorem in the theory of measurement. 

'Let p be a measure of the closed subspaces of a separable (real or com- 
plex) Hilbert space H of dimension at least three. There exists a positive 
semi-definite self-adjoint operator T of the trace class such that for all 
closed subspaces A of H 

p(A) = trace (TPa) 

where PA is the orthogonal projection of H onto A,' 
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T is a linear operator satisfying the conditions 
(i) T + = T 

(ii) T 2 .~< T 
(iii) t r aceT=  1 

The semi-definiteness condition (ii) means (~ , (T-  T 2) ~) 1> 0, all 
Jauch writes (96): 

'The theorem of Gleason ... is useful to show that the representation of 
quantum mechanical states is less arbitrary than it is customarily assumed 
(or at least presented). It shows that if one tries to generalise states, one 
would have to do so in the sense of [states where for instance the prob- 
ability distribution of an individual observable may depend on the exact 
physical conditions of the measuring device] .... 

'The operator T is yon Neumann's density operator. Every T which 
satisfies conditions (i)-(iii) has a discrete spectrum. Its spectral resolution 
has thus the form 

W=ZpnP11 
I1 

where P, is a projection operator with a one-dimensional range .... The 
eigenvalues p, satisfy then 

(i)' pn* = p, 
(ii)' O < p , < l  

(iii)' ~ p n =  1' 

If  T 2 = T the state is pure. In all other cases it is called a mixture. 

[(i)' is strictly redundant as it is implied by (ii)'.] 

Varadarajan (1962, 1965) 

In 1962 Varadarajan published a paper (82) of great importance, which 
has clearly influenced other writers since. 

However, we wish here to quote from his book (104) of 1965, with its 
neat summary of the significance of Gleason's theorem and its consequences. 

'This theorem, due to Gleason and established by him in 1957, forms 
naturally the corner stone of the foundations of quantum theory. Its 
proof which is a mixture of spherical geometry, classical harmonic analysis 
on the sphere and some standard functional analysis... As a consequence 
one can derive all the standard formulae, such as the expectation values 
of observables in states ... This is undoubtedly the culmination of the 
von Neumann programme of describing quantum theory through the 
ideas of geometry and it represents the point of departure for all modern 
quantum mechanical discussions. It may be emphasised that with the 
single exception of Gleason's theorem everything else in the discussion 
so far has remained substantially unchanged since von Neumann put 
them down in his book and articles.' 
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Jauch's Theory 

The first major contribution to the literature on measurement as such 
since London & Bauer was made by Jauch in 1964 (96). Drawing on the 
theorem of Gleason, and on the Considerable volume of work that had been 
done in the field of the algebra of closed subspaces of a Hilbert space starting 
with the classic paper of Birkoff& yon Neumann in 1936 (18), he had the 
novel idea of re-examining the notion of state to see whether there might 
be a simple algebraic explanation of the 'strange duality that has haunted 
physics'. 

Jauch asserts that his analysis dissolves the problem into a pseudo- 
problem. We shall present the essence of his argument here and then give 
our conclusions. 

The definition of state which Jauch prefers is as follows: 

'a state is the result of a series of physical manipulations on the system 
which constitute the preparation of the state'. 

Let S be the system of observables of a physical system. It is a set of self- 
adjoint operators. Two states W1 and W2 are equivalent with respect to the 
system S if 

trace A W~ = trace A W2 

for all A in S. This is written W1 ~ W2. ~ is clearly reflexive and symmetric, 
and its transitivity is almost as trivial. It is thus an equivalence relation. 
Now each state is designated as a 'microstate' and the equivalence class is 
called a 'macrostate'. The justification for this terminology follows. 

If  W~ and W2 are two different microstates, W =  21 W~ + 22 W2 with 
21 > 0, 22 >t 0; 21 + 42 = I is a microstate. The class of states equivalent to 
W is independent of the 'representatives' WI and W2 in the equivalence 
classes of W1 and W2. Or 

Theorem: 

w =  21 +22 w21twl  ~ wl' 
If: (i) w '  = 2, w ( +  22 w2'1 ~ w2" 

then W ~ W' 

(ii) 

If  o'v designates the subset of projections in S, for all E e av 

t r a c e E W =  21 tr EW1 + 22 tr EW2 by (i) 

=21trEWl '+22trEW2'  by (ii) 

= trE(21/411' + 22 W2') 
= trace E W' 

Then we can generalise to a by using the spectral theorem. 
As a result of this theorem 'it is possible to transfer the operation of 

mixture to the equivalence classes'. Jauch uses the notation [W] for the 
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class of microstates which are all equivalent to W. The theorem allows us to 
define a mixture of  macrostates by the formula 

[w]  = ~ l [w l l  + x2iw2l = [~1 w d  + ix2 w2] 

And it follows that if W~ ~ Wz then any mixture 2a Wa + 22 Wz is in the 
equivalence class of [W1] = [W2]. 

If  we denote the microstate after the measurement of the observable 
projection E by W g, we can formulate the question: is the class [W ~] 
independent of the representative W? It is, if and only if we can transfer 
the change of the state unde r measurements to the classes. Thus 

[ w q  = [w]  ~ 

We now seek a necessary and sufficient condition for this to happen. 
The measurement of E changes the state to W e =  EWE +E '  WE' [for 
proof  see Jauch (121), p. 166] where E '  = I -  E (I is the universally true 
statement). So E '  represents not-E. If E commutes with W, so will E' .  
Since E :  = E, we have 

EWE = WE 

E' W E '=  WE' 

w ' =  EWE + E' w E ' =  wE  + wE" 

= W(E + E') 

= W I = W  
So 

Now, if W ' =  W, WE= W ' E = E W E = E W '  =EW,  so that W and E 
commute. This is therefore the necessary and sufficient condition we require. 

And we have: 

Theorem (Jauch): The necessary and sufficient condition such that an ideal 
measurement of  a proposition represented by the projection operator E 
does not disturb a state W is that E commute with W. 

It is perhaps strange that this fundamental theorem, so long assumed to 
be true was not in fact proved until Jauch proposed his theory. Even then 
it is 'proved' only in the sense that if one accepts Jauch's terminology, he 
has shown that this obliges one to accept that the theorem is true and this 
establishes the connection between Jauch's theory and the conventional one. 

It also gives us good cause for believing that Jauch's macrostates are 
what we should be happy to accept as macrostates, and that they are in 
particular amenable to the classical treatment suggested by the theorem 
above. 

In this section of his paper entitled 'The Union and Separation of 
Systems' Jauch assembles the mathematical apparatus necessary for the 
deduction that 'the reason for the occurrence of process (1) ... is merely a 
mathematical consequence of  the reduction of  a pure state to one of  its 
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component subspaces.' The process (1) is the same as von Neumann's 
process (l) (see p. 90). 

This enables Jauch to assert that if the measuring device is now linked to 
a larger classical system it is in the same equivalence class as the state 
measured by the measuring device alone~ the two states being therefore 
indistinguishable from one another. 'One of the most vexing problems of 
quantum mechanics dissolves into a pseudoproblem.' 

Thus without stepping for one moment outside the probabilistic frame- 
work of quantum mechanics Jauch has apparently achieved the 'tour de 
passe-passe bien difficile h r6aliser' with which London & Bauer had 
challenged physicists. 

Daneri ,  Loinger  and Prosperi  

In 1962 Daneri et al. published a paper (80) outlining their own theory 
of measurement. It is surely one of the most 'difficult' papers ever published 
in the field of measurement. We treated it from the outset with circumspec- 
tion as we have sought a simplification of the problem and we are suspicious 
of any attempt that leaves it more complicated mathematically while 
claiming a substantial resolution of the physical difficulties.' Daneri et al. 
state that they are following the philosophy of Jordan & Ludwig (see (61))o 
Others to do so include Weidlich (118) and Green (60). The feature common 
to all these approaches is essentially that they wish to reduce the problem to 
a statistical-mechanical one. In this sense (and they appear to agree with this) 
they are all in fact 'objectivists' and belong rightly in Part III. Their work was 
endorsed by Rosenfeld (103). 

An example of the sheer complexity of their approach is the quintuple 
summations involved in equations (12.5)-(12.7) of (80); e.g. : 

(Muk , ( t )  -- Skv/Sk) 2 ~ '  ~k, ~k." ~k~ ~k~" 

skv/S~ ufi'~z' j=l j'=l ~=1 1'=1 

I~J,eol~ Iz'j',eOu" Al ,eoo ~-~ A'Y,eOv" ~ u  ult~pl) t 

(12.7)t 

Recently, however, serious doubt has been cast on their claim to have 
succeeded in their aim by Bub (120), whose paper also contains an excellent 
summary of Daneri, Loinger & Prosperi's theory. We are satisfied by 
Bub's argument and leave the reader to judge, if he wishes, whether it in fact 
demolishes the theory of Daneri et al. 

We quote below Daneri, Loinger & Prosperi's judgement of Jauch's 
theory. Their view of their own work is understandably less harsh. We 
quote, without comment: Their theory 'constitutes an indispensable 
completion and a natural crowning of the basic structure of present-day 

t Actually careful examination of DLP's text reveals that the term L~a],~,t, should 
(,~v) ! read Lzz,a,r. 
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quantum mechanics'. So, naturally, they are 'firmly convinced that further 
progresses (sic) in this field of research will consist essentially in refinements 
of (their) approach'. 

Critique 
Until someone comes forward with a more plausible account of the 

measuring process than is described by Jauch, his theory must stand. It is 
elegant and attractive. It appears to deal with the strange problem of 
measurement in a simple and precise way. That is not to say that the usual 
mystique will not re-emerge in a new form: Jauch's theory is not universally 
accepted, but it has provoked his opponents into a rethinking of their views. 
It was possible for Jauch to write in 1967 (114) that 'When this idealized 
notion of 'classical' (commuting) observables is adopted as an additional 
requirement of a suitable measuring device, the solution of the dilemma is 
easy...  It is based on the theory of equivalence classes of states. A measure- 
ment determines not individual microstates but only equivalence classes of 
such which we might call macrostates. It is then easy to show that the two 
states cA and c'A' and the mixture of A and A' with probabilities Ic[ z and 
lc'l 2 are always in the same equivalence class with respect to that specific 
measurement. There is thus no possibility to "collapse the state vector" ... 
contrary to the present doctrine of quantum mechanics.' This last assess- 
ment carries also the name of Wigner. 

However, Daneri et al. (108) write in disparaging terms of Jauch's theory. 
'This author claims to have dissolved, by means of a suitable analysis, the 
entire problem of the measuring process into a pseudo-problem. In reality, 
he has missed the point. As it has been pointed out by Rosenfeld (private 
communication ...) [but see (103)] 'he has unfortunately dismissed as 
unimportant the behaviour of the amplifier, which.., is just the key to the 
understanding of the reduction (of the wave packet). If one reads Jauch's 
text carefully, one notices the logical gap in his argument just at this point; 
in fact, he does not give any physical justification for considering the 
probability operator of the microsystem II (the microscopic part of the 
measuring device), which gives him the reduction.' 

'In Jauch's opinion, any attempt, like ours, of finding in the macroscopic 
nature of the measuring instruments the reasons for the occurrence of a 
mixture at the end of the measuring process would be doomed to failure. 
He claims that this conclusion follows.., etc.' 

They proceed to give a number of arguments against Jauch's theory, 
which with the possible exception of the quotation from Rosenfeld, do not 
amount to anything more than a restatement of the position as it was before 
Jauch published his paper. We take particular exception to the partly 
patronising, partly tendentious use of the words italicised (by us). 

Most of the criticism that has been levelled at Jauch's work comes into 
the category of 'objectivistic' argument, and will be dealt with accordingly 
in Part IIL 
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PART III: THE OBJECTIVISTS 

'That power which erring men call Chance' 

John Milton (Comus, line 587) 

Chapter 1 

Einstein, Podolsky and Rosen (1935) 

A serious challenge to the 'Copenhagen interpretation' of quantum 
mechanics came from a paper written by Einstein et al. (15) in which they 
give a careful analysis of the measurement of two non-commuting operators, 
showing that 

'Either (1) the quantum-mechanical description of reality given by the 
wave function is not complete or (2) when the operators corresponding to 
two physical quantities do not commute the two quantities cannot have 
simultaneous reality. Starting then with the assumption that the wave 
function does give a complete description of the physical reality, we 
arrived at the conclusion that two physical quantities, with non- 
commuting operators, can have simultaneous reality. Thus the negation 
of (1) leads to the negation of the only other alternative (2). We are thus 
forced to conclude that the quantum-mechanical description of physical 
reality given by wave functions is not complete.' 

They immediately grant that one solution to this apparent dilemma is that 
'our criterion of reality is not sufficiently restrictive'. 

Subsequent writers have taken up the challenge thrown down in the last 
paragraph of this paper: 

'While we have thus shown that the wave function does not provide a 
complete description of the physical reality, we left open the question of 
whether or not such a description exists. We believe, however, that such 
a theory is possible.' 

Schroedinger (1935) 

Schroedinger wrote a wide-ranging paper (16) which includes the well- 
known 'cat paradox' discussed in Part I. We translate from p. 824: 

'The rejection of realism has logical consequences. A variable in general 
has no definite value before I measure it: measuring it then does not mean 
determining the value that the variable has.' 

But, we insist, this is a semantic problem, not a physical one, because we are 
free to associate the measured value with an attribute of the observable 
which we shall calt its 'value'. This procedure does not appear to lead to 
inconsistencies, but it does allow of the paradoxes of Schroedinger and 
Einstein. But this would suggest that it is partly as a result of the use of 
confusing terminology that these paradoxes arise. We have already suggested 
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that the Schroedinger paradox would crumble under a careful re-examina- 
tion of the nature of an apparently 'classical' observation. We further 
suggest that the paradoxes would never have seen the light of day had there 
not been an unwarranted transfer of the terminology of classical mechanics 
to the quantum realm without sufficient care. 

At the same time as the work described in Part II, a parallel effort was 
being made to resolve the measurement problem by a much more funda- 
mental attack. A succession of physicists drawing their inspiration from 
Einstein's stated doubts about the validity of the 'subjective' 'probabilistic' 
approach of the Copenhagen school set out to replace it by an 'objectivistie', 
'deterministic', and 'causal' system of quantum mechanics. 

It had been difficult enough to convince laymen of the essentially statistical 
nature of quantum phenomena, and hence of all phenomena. Now the 
physicists themselves began to have doubts. Granted, the theory appeared 
to be successful. But then so had the phlogiston theory, not to mention the 
archetype of causality--Newtonian classical dynamics--which had been 
refined into relativistic classical dynamics. (There is of course nothing non- 
classical about relativity except the date of its emergence.) Could it not be 
too easy to accept the finality of a theory, only to discover that there was 
evidence that the theory was incomplete ? This situation had never failed to 
arise before. History seemed reluctant to use a full-stop. It had sprinkled 
physics with commas, semi-colons--even question-marks and exclamation 
marks--but never a full-stop before. As we have said, von Neumann 
showed that within the system of quantum mechanics there was no possible 
advantage in introducing 'hidden variables', as these could not add to our 
knowledge of the system. Von Neumann writes: 

'It is therefore not, as is often assumed, a question of a re-interpretation 
of quantum mechanics,--the present system of quantum mechanics 
would have to be objectively false, in order that another description of the 
elementary processes than the statistical one be possible.' 

This assertion has been challenged on the grounds that von Neumann did 
not allow of the widest possible choice of hidden variables. In response to 
this, Jauch and others have refined von Neumann's argument. The debate 
continues: the latest salvo was fired in 1968 (reference 122). We are reluctant 
to embark on a detailed discussion of the theories proposed, as they seem 
to have a higher mortality rate than do the counter-theories. Bohm, for 
example, wrote in 1957 (51) of his 1952 theory (40) that it was 'rather artificial 
in form, besides being subject to the criticism ... that it implies instan- 
taneous interactions between distant particles, so that it is not consistent 
with the theory of relativity.' So he set out to look for 'a further new 
explanation (!)... in terms of a deeper subquantum-mechanical level.' 

De Broglie on Bohm 

De Broglie had been a sympathetic reader of all the attempts to reformu- 
late quantum mechanics on a deterministic basis. In (52) in 1957 he described 



THEORY OF MEASUREMENT IN QUANTUM MECHANICS 107 

' . . .  la th6orie de la double solution que j'ai ~t nouveau d6velopp6e depuis 
quelques ann6es ~t la suite d'un travail de M. David Bohm .... ' 

In 1956 he had written, in (93) about Bohm's 1952 theory alluded to in 
the above extract that: 

'He assumes that the C-wave is a physical reality (even the wave in 
configuration space !). I have already stated why such an hypothesis 
appeared absolutely untenable to me. 

'Bohm's papers contain still other statements that strike us as dubious. . .  
The modification ... he proposes as a remedy seems to me artificial.' 

Then de Broglie pays tribute to Bohm's achievement in focusing attention 
'on the possibility of an interpretation of Wave Mechanics different from 
the one that is now prevalent'. 

That Bohm's theory appears to have been constructed artificially to 
satisfy a particular need is not, we must insist, a reason for rejecting it. Once 
again, we recall that 'Extreme remedies .. . '  The striking fact is that the 
potential supporters of Bohm's point of view, de Broglie among them, have 
not felt drawn to any of his proposed theories. 

To the unsympathetic reader, Bohm's theories take on at times an almost 
bizarre appearance. Land6 has put it rather well (102). He castigated Bohm 
for inventing ad hoe 'hydrodynamic forces' to explain simple facts in a 
complicated way. There is, of course, as Land6 points out, nothing in 
principle to prevent the success of a 'sub-quantum' explanation--except 
its failure. 

Thus we have the spectacle of respectable physicists grubbing around at 
the sub-quantum level for the philosopher's stone that will transmute 
uncertainty into deterministic certainty. The whole search for determinism 
carries the aura of alchemy. It has had about as much success as did its 
mediaeval precursors in discovering nuclear fission. 

We do not propose to spend a great deal of time discussing the details of 
these theories, details of which are given in the Bibliography, under 
references (40), (44), (48), (50), (52), (68), (93), (95) etc. 

Bohm versus Jaueh 

An interesting example of the way in which the exponents of 'objective' 
quantum theory have catalysed the orthodox workers into a careful 
reformulation of their theory is given in reference (122). 

In 1963 Jauch & Piton published a paper (87) in which they modified von 
Neumann's proof of the impossibility of hidden variables to accommodate 
criticism that it had depended on the validity of quantum mechanics and 
was thus essentially a circular argument. This point was made with emphasis 
by Daneri et al. (80) and by Rosenfeld (103). Instead of assuming that 
quantum mechanics was valid, Jauch & Piron took the lattice of proposi- 
tions, which is shown to be isomorphic to the lattice of subspaces of Hilbert 
space. These propositions are treated as yes-no experiments. 
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Bohm & Bub wrote a paper (106) rebutting the argument of Jauch & 
Piton, and asserting that the measurement problem could not be solved 
within the framework of the statistical interpretation. 

In the correspondence referred to above (122), Jauch & Piron defend their 
position and Bohm & Bub are allowed the right of reply. 

Jauch & Piron merely restate in non-technical language the position they 
took in 1964. Bohm & Bub use the analogy of non-Euclidean geometry: 
they say that since the deviation of elliptic geometry from Euclidean 
geometry may be so slight that it could not yet have been tested for our 
universe, we are not entitled to exclude the possibility that we live in a non- 
Euclidean world. However, we feel that the analogy breaks down at this 
point. Terrestrial experiments can be designed to discover the curvature of 
space (if any): but there are no Concrete manifestations of divergence from 
a Euclidean structure. Bohm & Bub must maintain--if  their approach is to 
withstand Land6's methodological criticism--that the non-Copenhagen 
(or whatever) nature of quantum mechanics manifests itself in the measur- 
mentprocess. But surely something strong enough to manifest itself in every 
observation ever made, in every interaction between quantum and classical 
systems, should be amenable to experimental deduction. 

The analegy now takes the following course: if there were a freakish 
property of the physical world that did not correspond to the Euclidean 
prediction, we should certainly look for a non-Euclidean solution. (But 
where are Bohm's Brocken, Hohenhagen and Inselsberg ?) So far, however, 
in ordinary Geometry, we have found no properties that could not be best 
accommodated by a tightening of the Euclidean axiomatic system. It would 
be a rash man who submitted himself to the discipline of non-Euclidean 
geometry merely because he found difficulty in proving the mid-point 
theorem. We can and should resist any temptation to join him in this 
masochistic exercise. 

Ckapier 2 

Causality: Why ? 
No one seems to have stopped and asked why we consider causality to be 

a good thing and probability to be an essentially bad one. After all, the only 
theory that has yet failed to yield a refinement is a probabilistic one, while 
all but the latest deterministic theories represent merely one stage in the 
process of refinement. 

There is in principle no good reason for supposing that the basic laws of 
our world are not probabilistic. There is no essential merit, no moral 
superiority in a deterministic theory. There is, as evidenced by the constant 
refinement, no essential element of 'truth' in deterministic theories as com- 
pared with statistical ones. 

Would we be so keen to find a causal, deterministic answer to our problem 
if we had not been brought up on Newtonian mechanics ? Look back further, 
to the first stages of learning: we manipulate exact numbers and get exact 
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answers. Is it surprising that we grow up to expect the quantities of adult 
sums to behave in the same way as their infant counterparts ? 

We repeat what we said at the beginning of Part I: that the 'classical' 
nature of classical physics emerged from the reconsideration of that disci- 
pline in the light of quantum theory. 

Laplace' s Demon 

In this connection it is interesting to trace the history of 'Laplace~s 
demon' in the literature of physics. 

Laplace wrote in 1819 in his Thdorie Analytique des Probabilitds: 

'Given for one instant an intelligence which could comprehend all the 
forces by which nature is animated and the respective situations of the 
being (~tres) who compose it--an intelligence sufficiently vast to submit 
these data to analysis--it would embrace in the same formula the move- 
ments of the greatest bodies of the universe and those of the lightest atom; 
for it, nothing would be uncertain and the future, as the past, would be 
present to its eyes. The human mind offers, in the perfection which it has 
been able to give to astronomy, a feeble idea of this intelligence. Its 
discoveries in mechanics and geometry, added to that of universal 
gravity, have enabled it to comprehend in the same analytical expressions 
the past and future states of the system of the world. Applying the same 
method to some other objects of its knowledge it has succeeded in refer- 
ring to general laws observed phenomena and in foreseeing those which 
given circumstances ought to produce. All these efforts in the search for 
truth tend to lead it back continually to the vast intelligence which we 
have just mentioned, but from which it will always remain infinitely 
removed. This tendency, peculiar to the human race, is that which renders 
it superior to animals; and their progress in this respect distinguishes 
nations and ages and constitutes their true glory.' 

Mach, writing in 1883, said of thisi 

'Laplace even conceived a mind competent to foretell the progress of 
nature for all eternity, if but the masses, their positions, and initial 
velocities were given. In the eighteenth century, this joyful overestimation 
of the scope of the new physico-mechanical ideas is pardonable. Indeed 
it is a refreshing, noble, and elevating spectacle; and we can deeply 
sympathize with this expression of intellectual joy, so unique in history. 

'But now, after a century has elapsed, after our judgement has grown 
more sober, the world-conception of the encyclopaedists appears to us 
as a mechanical mythology in contrast to the  animistic of the old 
religions . . . .  

'Physical science does not pretend to be a complete view of the world .... ' 
((126), pp. 558-9). 
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But, we protest, Laplace conceived of  an intelligence with those powers in 
order to contrast it with the actual powers of the human intellect. And he 
was writing in the nineteenth century, not the eighteenth. 

But now let us see what happened to Mach's description, when it was 
re-interpreted for twentieth-century audiences by Andrade in 1956: 

'Laplace ... put forward the view that an intelligence which should know 
the masses &c . . . .  would be able t o . . .  foretell the whole future and trace 
back the whole past. This mathematical and mechanical mythology was 
at one time widely accepted in certain scientific circles: in fact a famous 
writer (footnote: Ernest Mach) of the end of the past century said that at 
that time a great majority of scientists were of this way of thinking.' 
((49), p. 239) 

Poor Mach. 
Determinism is constantly set up like a nine-pin, simply to be knocked 

down anew. We shall resist the temptation to repeat the process and content 
ourselves with the observation that if no one really believed in determinism 
before the advent of quantum mechanics it seems a futile task to 'restore' the 
'lost' determinism. 

We conclude with the words of T. H. Huxley (On the physical Basis of  
Life, 1868): 

'And what is the dire necessity and "iron" law under which men groan ? 
Truly most gratuitously invented bugbears . . . .  It is very convenient to 
indicate that all the conditions of belief have been fulfilled, by calling the 
statement that unsupported stones will fall to the ground, "a law of 
Nature". But when, as commonly happens, we change will into must, we 
introduce an idea of necessity which most assuredly does not lie in the 
observed facts, and has no warranty that I can discover elsewhere. For 
my part, I utterly repudiate and anathematise the intruder. Fact I 
know; the Law I know; but what is this Necessity, save an empty shadow 
of  mine own mind's throwing ?' 

PART IV: AN ANNOTATED BIBLIOGRAPHY 

This bibliography is intended to include all the major works on the 
theory of measurement, together with those other contributions that we 
have found helpful. As our intention is to give an historical picture of the 
evolution of the problem and the attempts to solve it, we have taken the 
unusual course of  arranging the Bibliography in chronological order. 

We have, however, arranged the publications of each year in alphabetical 
order. We have also provided an index of authors, so that this Bibliography 
can be used in the conventional way if so required. 

1926 

1. Born, M., Zeitschr~ftfuer Physik, 38,803. This paper is the source of the probabilistic 
interpretation of quantum mechanics. 
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1927 

2. Heisenberg, W., Zeitschrift fuer Physik, 43, 172. The uncertainty rdations are 
introduced here. 

3. yon Neumann, J., Goettinger Naehrichten, p. 273. Derives a formula for the mean 
value of a physical quantity: Qe -an, where Q is the matrix operator of the quantity 
and H is the Hamiltonian of the system. 

1928 

4. Bohr, N., Nature, 121, 580. Source of'Bohr' s interpretation of quantum mechanics' : 
he introduces the idea of complementarity and emphasises the non-causal nature of 
quantum mechanics. 'Measurements in the Quantum Theory', pp. 582--4, w is a 
detailed examination of the 'Heisenberg microscope'. 

5. Solvay Congress, Reports on the 1927 Solvay Congress, Paris, Gauthier-Villars, 
1928. Pauli attacks de Broglie's point of view, p. 280. 

1929 
6. Dirac, P. A. M., Proceedings of the Cambridge Philosophical Society, 25, 62. 'The 

Basis of Statistical Quantum Mechanics.' 

1930 

7. Heisenberg, W., The Physical Principles of Quantum Theory, University of Chicago 
Press, Chicago, Ill., 1930. Since reprinted by Dover Publications, N.Y. The famous 
'Chicago Lectures' of Heisenberg. 

1931 

8. Bohr, N., Atomtheorie und Naturbeschreibung--Atomic Theory and Description of 
Nature, Cambridge University Press, 1934. 

1932 

9. Kolmogorov, A ,  Annals of  Mathematics, 33, 175. Shows that any projective 
geometry whose elements have a locally compact topology must be over the real, 
complex or the quaternion field. 

!0. yon Neumann, J., Mathematische Grundlagen tier Quantenmechanik, Berlin, 
Springer, Chapters IV-VL 
- - ~  Mathematical Foundations of  Quantum Mechanics (tr. R. T. Beyer), Princeton 
University Press, 1955. 

1933 

I I. Bohr, N., Nature, 131,421,457. 
t2. Bohr, N. and Rosenfeld, L., Danske Vidensk. Selskab. 
13. Kolmogorov, A., Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin. The first 

explicit statement of the axioms of classical probability theory. 

1935 

14. Bohr, N., Physical Review, 48, 696. 
! 5. Einstein, A., Podolsky, B. and Rosen, N., Physical Review, 47, 777. 
t 6. Schrcedinger, E., Die Naturwissenschaften, 23, 807, 823, 844. 
7. Schroedinger, E., Proceedings of the Cambridge Philosophical Society, 31l, 555. 

1936 

18. Birkoff, G. D. and yon Neumann, J., Annals of Mathematics, 37, 823. They develop 
the calculus of propositions: the language used by most modern writers. 

19. Furry, W. H., Physical Review, 49, 393. 
20. Lindsay, R. B. and Margenau, H., Foundations of  Physics, John Wiley, New York. 

Chapter 2: 'The Problem of Causality'. 
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21. Margenau, N. H., Physical Review, 49, 240. 
22. Schroedinger, E., Proceedings of the Cambridge Philosophical Society, 32, 446. 

t937 
23. Elsasser, W. M., Physical Review, 52, 987. 
24. Kemble, E. C., The Fundamental Principles of Quantum Mechanics, McGraw-Hil|, 

New York. 'The Measurement of Dynamical Variables', pp. 381-47. 
25. Margenau, H., Philosophy of Science, 4, 337. Still worth reading. 

1939 
26. London, F. and Bauer, E., La Th~orie de l'Observation en M~canique Quantique, 

Hermann, Paris. 

1944 
27. Reichenbach, H., Philosophical Foundations of Quantum Mechanics, University of 

California Press, Berkeley, California. 
28. Whittaker, E. T,,PhilosophicalMagazine, Ser. 7, 35, 1. 'The New Algebras and their 

Significance for Physics and Philosophy.' 

1945 
29. Dirac, P. A. M., Reviews of Modern Physics, 17, 195. Develops a formal probability 

for non-commuting observables to have numerical values. The first use of complex 
probabilities, but no interpretation given. 

30. Powell, F. C., Proceedings of the Cambridge Philosophical Society, 41, 57. Establishes 
the connection between observables and measurement. 

1946 
3t Groe~woid, H. J., P~ysics, ~2, 405. Introduces the idea of 'entangled' state and 

~infringed' state between initial and measured states, an idea which was never 
followed up. Asserts categorically that the observer is 'unsusceptible of a physical 
treatment'. 

1947 
32. Segal, !. E., Annals of Mathematics, 48, 930. Axiomatisation of quantum mechanics 

in a very elegant manner, which by virtue of its simplicity 'serves to confute the view 
that the indeterminacy principle is a reflection of an unduly complex formulation 
of quantum mechanics, and strengthens the view that the principle is quite intrinsic 
in physics, or in any physical science based on quantative measurements'. 

1948 
33. Bohr, N., Dialectica, ~, 312. 
34. Bohr, N., DiaIectica, 2,, 317. 

I949 
35. Bohr, N., discussion with Einstein, A., Albert Einstein Philosopher-Scientist (edited 

by P. A. Schilpp), Evanston, Illinois. 
36. Born, M., Natural Philosophy of Cause and Chance, Oxford University Press. 

1950 
37. Margenau, H., The Nature of Physical Reality, McGraw-Hill, New York. 

1951 
38. Bohm, D., Quantum Theory, Prentice-Hall, New Jersey. 
39. Feynman, R. P., 'The Concept of Probability in Quantum Mechanics' in the 

Proceedings of the Second Berkeley Symposiam in Mathematical Statistics, Berkeley, 
California. 



THEORY OF MEASUREMENT IN QUANTUM MECHANICS ] 13 

1952 
40. Bohm, D., Physical Review, 85, 166, 180. 'The development of the usual interpretation 

of the quantum theory seems to have been guided to a considerable extent by the 
principle of not postulating the existence of entities which cannot now be observed... 
(which is) . . ,  an extraphysical limitation on the. . ,  theories . . . .  As an alternative.,.  
we wish to prevent (sic) another hypothesis.., that the world as a whole is objectively 
real and that, as far as we now know, it can correctly be regarded as having a 
precisely describable and analyzable structure of unlimited complexity.' 

41. Schroedinger, E., British Journal for the Philosophy of  Science, 3, 19. 
42. Wigner, E. P., Zeitschrift fuer Physik, 131, 101. Suggests that the existence of a 

conservation law implies a restriction on the measurability of any quantity that does 
not commute with the conserved quantity. 

1953 

43. Ludwig, G., Zeitschriftfuer Physik, 135 483. 'Der Messprozess.' 
44. Wiener, N. and Siegel, A., Physical Review, 91, 1551. The wave function is replaced 

by a mapping of points of differential space, 'closely related to Hilbert space but 
having an associated measure'. Probability amplitudes are replaced by probabilities 
or probability densities. 

1954 
45. Ludwig, G., Die Grundlagen der Quantenmechanik, Springer, Berlin. V. Der 

Messprozess: see (43). An exhaustive account, taking the view later expressed in 
detail by Daneri et aL wherein the apparatus is taken to be in a metastable state. 

1955 
46. Bastin, E. W. and Kilmister, C. W., Proceedings of  the Cambridge Philosophical 

Society, 51,454, 'The Concept of Order' II: Measurements. Described by Bastin in 
Colston Proceedings (55). 

47. Weizsaecker, C. F. yon, Die Naturwissensehaften, 42, 521. An excellent summary of 
the position of quantum logic as it stood at the time of writing. 

48. Wiener, N. and Siegel, A., ll Nuovo Cimento, Suppl. 2, Series X, 304. 

1956 
49. Andrade, E. N. da C., An Approach to Modern Physics, London. 
50. Siegel, A. and Wiener, N., Physical Review, 101,429. 'Theory of Measurement in 

Differential-Space Quantum Theory.' A development of the authors' theory (see 44): 
here they concede that its serious drawback is that 'one must admit the "real 
existence" of the individual systems represented by points in differential space'. 
Criticises Bohm's theory (40) as in it 'the position (or functions thereof) is the only 
variable that can ever be measured on an individual system without in general 
simultaneously altering its value'. 

1957 
51. Bohrn, D. and Aharonov, Y., Physical Review, 108, 1070. Possible experimental 

tests for Einstein-Podolsky-Rosen paradox (15). 
52. de Broglie, L., La thdorie de la mesure en mdcanique quantique, Gauthier-Villars, 

Paris. De Broglie here resuscitates his 1927 theory of the 'double solution', spurred 
on by the work of Bohm et aL Unexceptionable treatment of the orthodox theory, 
drawn largely from London & Bauer (26). 

53. Everett, H., III, Reviews of  Modern Physics, 29, 454. Includes the observer in his 
'metatheory'. 

54. Gleason, A. M., Journal o f  Mathematics and Mechanics, 6, 885. Source of 
'Gleason's theorem'. 

55. Koerner, S. (editor), Observation andlnterpretation. A Symposium of Philosophers 
8 
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and Scientists (Colston Papers, Volume IX). Butterworth, London. Feyerabend, 
P. K., 'On the Quantum Theory of Measurement', p. 121, tries to show 'that it is 
possible to give an account of the process of measurement which involves nothing 
but the equations of motion and statements about the special properties of the 
systems involved, especially statements about the properties of the measuring- 
device'. Suessmann, G., 'An Analysis of Measurement', p. 131. 

56. Mackey, G. W., American MathematicalMonthty, 64, II, 45. 'Quantum Mechanics 
and Hilbert Space.' One of the most lucid accounts of the subject yet written. 

57. Wheeler, J. A., Review of Modern Physics, 29, 463. An'assessment' of Everett's paper 
(53). 

1958 

58. Bohm, D., Causality and Chance in Modern Physics, Routledge and Kegan Paul, 
London. (American edition published by van Nostrand, New Jersey, 1957.) This 
is Bohm's statement of faith. 

59. Bohr, N., Atomic Physics andHuman Knowledge, Wiley, New York. 
60. Green, H. S., II Nuovo Cimento, 9, 880. 'The observation of an individual micro- 

system is possible only by means of its interaction with a macroscopic system in a 
metastable state.' (Cf. (45).) 

61. Ludwig, G., Zeitschriftfuer Physik, 150, 346; 152, 98. 
62. Margenau, H., Philosophy of Science, 25, 23. 'Philosophical problems concerning 

the meaning of measurement in physics.' 
63. Suessmann, G., Bayerische Akademie (Muenchen), 88 (whole volume), 'Ueber den 

Messvorgang'. 
64. Weizsaecker, C. F. yon, Zeitschriftfuer Naturforschung, 13a, 245, 705. Continuation 

of (48). 

1959 

65. Heisenberg, W., Physics and Philosophy : The Revolution in Modern Science, George 
Allen & Unwin, London. Pages 115 onwards are a very convincing defence of the 
Copenhagen position against Bohm and de Broglie. 

66. Sehwinger, J., Proceedings of  the National Academy of Science, 45, 1542. 'The 
Algebra of Microscopic Measurement.' Very neat and concise. 

67. Varadarajan, V. S., Operators in Hilbert Space, Indian Statistical Institute, Calcutta, 
35. 

1960 

68. Aharonov, Y. and Bohm, D., llNuovo Cimento, 17, 964. More'Possible experimental 
tests'. 

69. Araki, H. and Yanase, M. M., Physical Review, 120, 622. Follow-up of (42). 
70. Durand, L., III, Philosophy of Science, 28, 115. 'On the theory of measurement in 

quantum mechanical systems.' See (125). 
71. Jauch, J. M., Helvetica Physica Acta, 33, 711. 
72. Wakita, H., Progress of  Theoretical Physics, 23, 32. Part ! of 'Measurement in 

Quantum Mechanics'. See (83~ 

1961 

73. Aharonov, Y. and Bohm, D., Physical Review, 122, 1649. 
74. Albertson, J., American Journal of  Physics, 29, 478. 
75. Ludwig, G., in Werner tteisenberg und die Physik unserer Zeit, Vieweg, Braun- 

schweig. 
76. Margenau, H. and Hill, R. N., Progress of TheoreticatPhysies, 26, 722. 
77. Rosenfeld, L., Nature, 190, 384. 
78. Zierler, N.,PacificJournalofMathematies, 11, 1151. A new Axiomatisation. 
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1962 
79. Bohm, D. et al., Quanta and Reality: a symposium, Hutchinson, London. Interesting 

transcript of a discussion between Bohm and Professor Maurice Pryce: perhaps 
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